organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4,5-Diazafluoren-9-ylidene)-4methylaniline

Hui Cang,^a Dong Jin,^b Si-Qing Wang,^a Bin Xu^a and Jin-Tang Wang^a*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bCollege of Chemistry and, Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: wjt@njut.edu.cn

Received 16 November 2008; accepted 25 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.167; data-to-parameter ratio = 13.3.

In the molecule of the title compound, $C_{18}H_{13}N_3$, the 4,5diazafluorenylidene unit is nearly planar and is oriented at a dihedral angle of 66.31 $(1)^{\circ}$ with respect to the benzene ring. In the crystal structure, molecules are stacked regularly along the c axis.

Related literature

For the photochemical properties of 4-methyl-N-(4.5-diazafluorenylidene)benzenamine, see: Wang & Rillema (1997). For related structures, see: Glagovich et al. (2004a,b); Peters et al. (1998); Wang et al. (2006).

Experimental

Crystal data

$C_{18}H_{13}N_3$	$\gamma = 85.79 \ (3)^{\circ}$
$M_r = 271.31$	V = 699.1 (2) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 7.5970 (15) Å	Mo $K\alpha$ radiation
b = 8.6100 (17) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 10.998 (2) Å	T = 293 (2) K
$\alpha = 77.11 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 87.48 \ (3)^{\circ}$	

Data collection

```
Enraf-Nonius CAD-4
  diffractometer
Absorption correction: \psi scan
  (North et al., 1968)
  T_{\min} = 0.977, T_{\max} = 0.985
2742 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.167$ S = 1.002534 reflections

1829 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$ 3 standard reflections every 200 reflections intensity decay: none

2534 independent reflections

190 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.50 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2187).

References

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

- Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, 0623-0625.
- Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269-o1270.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

- Peters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213 607-608
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377-12390.
- Wang, C. X., Wang, P. & Li, Z. F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 211-212.

supplementary materials

Acta Cryst. (2009). E65, o6 [doi:10.1107/S1600536808039627]

N-(4,5-Diazafluoren-9-ylidene)-4-methylaniline

H. Cang, D. Jin, S.-Q. Wang, B. Xu and J.-T. Wang

Comment

4-Methyl-*N*-(4,5-diazafluorenylidene)benzenamine, is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). The crystal structure of 4-methyl-*N*-(4,5diazafluorenylidene)benzenamine monohydrate, (II) (Wang *et al.*, 2006) was reported, previously. We report herein the crystal structure of the title compound, (I), Fig. 1.The bond lengths and angles are comparable with the solvated form (II), and with other fluorenylidene compounds : *N*-fluorenylidene-aniline-benzene (4/1) (III) (Peters *et al.*, 1998), *N*-(9*H*-fluoren-9-ylidene)-*N*-(4-methoxyphenyl)amine, (IV) (Glagovich *et al.*, 2004*a*) and *N*-9*H*-fluoren-9-ylidene-3,4-dimethyl- aniline, (V) (Glagovich *et al.*, 2004*b*). The coplanar ring system is oriented with respect to benzene ring at a dihedral angle of 66.31 (1)°.In the crystal of the title compound, no obvious hydrogen bond is observed, and molecules are stacked regularly along *c* axis, Fig. 2.

Experimental

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). The crystals were obtained by dissolving compound (I) (2.0 g, 6.3 mmol) into solution of acetic ether (50 ml, 1.0 mol/L), and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/O)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1. A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I).

N-(4,5-Diazafluoren-9-ylidene)-4-methylaniline

Crystal data	
C ₁₈ H ₁₃ N ₃	Z = 2
$M_r = 271.31$	$F_{000} = 284$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.289 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.5970 (15) Å	Cell parameters from 25 reflections
b = 8.6100 (17) Å	$\theta = 10-13^{\circ}$
c = 10.998 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 77.11 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 87.48 \ (3)^{\circ}$	Plate, yellow
$\gamma = 85.79 \ (3)^{\circ}$	$0.30\times0.20\times0.20\ mm$
$V = 699.1 (2) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 293(2) K	$h = -9 \rightarrow 9$
$\omega/2\theta$ scans	$k = -9 \rightarrow 10$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 13$
$T_{\min} = 0.977, \ T_{\max} = 0.985$	3 standard reflections
2742 measured reflections	every 200 reflections
2534 independent reflections	intensity decay: none
1829 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.167$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.85P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
2534 reflections	$\Delta\rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
190 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Deinsens stern site 1. setiens starstern insenient diment	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

C12

C13

C14

H12A

x

0.2236 (4)

0.3085 (3)

0.3829(3)

0.2157

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 \boldsymbol{z}

0.4952 (3)

0.4114(2)

0.3185(2)

0.4907

 $U_{iso}*/U_{eq}$

0.0537 (8)

0.0421 (6)

0.0429 (6)

0.064*

N1 0.2577(3)1.3579 (3) 0.5598(2)0.0539(7)C1 0.0220(6) 1.2134 (6) 1.0717 (3) 0.0953 (14) H1B -0.08981.2705 1.0794 0.143* H1C 0.143* 0.1063 1.2457 1.1223 H1D 0.0091 1.1008 1.0992 0.143* N2 0.2970 (3) 0.8734 (3) 0.3984(2)0.0507(6) C2 0.0855(5)1.2499 (5) 0.9378(3)0.0658(9)N3 0.4535 (3) 1.1454 (3) 0.2071 (2) 0.0526(6) C3 0.2450 (4) 1.1836 (4) 0.8993 (3) 0.0584 (8) H3B 0.070* 0.3152 1.1156 0.9583 C4 0.3018 (4) 1.2158 (4) 0.7759(3) 0.0551 (8) H4A 0.4094 1.1703 0.7528 0.066* C5 0.1987 (4) 1.3158 (3) 0.6866(3)0.0501(7)C6 0.0411 (4) 1.3877 (4) 0.7236 (3) 0.0602 (8) H6A -0.02681.4590 0.6650 0.072* C7 -0.0137(5)1.3531 (5) 0.8469(3)0.0723(10)H7A -0.12031.4002 0.8701 0.087* C8 0.2867 (4) 1.2521 (3) 0.4951 (2) 0.0432 (6) C9 0.2518(3)1.0803(3)0.5183(2)0.0398 (6) C10 0.1712 (4) 0.9757 (3) 0.6156 (3) 0.0463 (7) H10A 0.1279 1.0086 0.6868 0.056* C11 0.1576 (4) 0.8219(4)0.6030(3)0.0490(7)0.059* H11A 0.1044 0.7485 0.6663

0.7763(4)

1.0227 (3)

1.1547 (3)

0.6705

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

v

supplementary materials

C15	0.5163 (4)	1.2817 (4)	0.1427 (3)	0.0586 (8)
H15A	0.5670	1.2820	0.0641	0.070*
C16	0.5114 (4)	1.4213 (4)	0.1839 (3)	0.0617 (9)
H16A	0.5590	1.5111	0.1338	0.074*
C17	0.4364 (4)	1.4296 (4)	0.2994 (3)	0.0545 (8)
H17A	0.4317	1.5228	0.3292	0.065*
C18	0.3691 (4)	1.2917 (3)	0.3673 (2)	0.0457 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0653 (17)	0.0495 (14)	0.0480 (14)	0.0060 (12)	0.0035 (12)	-0.0170 (11)
C1	0.086 (3)	0.149 (4)	0.054 (2)	-0.014 (3)	0.016 (2)	-0.029 (2)
N2	0.0502 (15)	0.0541 (15)	0.0501 (14)	0.0092 (11)	-0.0023 (11)	-0.0200 (12)
C2	0.058 (2)	0.097 (3)	0.0483 (18)	-0.0093 (18)	0.0060 (16)	-0.0284 (18)
N3	0.0500 (15)	0.0690 (17)	0.0361 (13)	0.0112 (12)	-0.0010 (11)	-0.0111 (12)
C3	0.059 (2)	0.072 (2)	0.0459 (17)	0.0002 (16)	-0.0022 (14)	-0.0174 (15)
C4	0.0563 (19)	0.0615 (19)	0.0507 (18)	0.0054 (15)	0.0036 (14)	-0.0233 (15)
C5	0.0569 (18)	0.0489 (16)	0.0487 (17)	0.0000 (13)	0.0049 (14)	-0.0220 (13)
C6	0.0562 (19)	0.068 (2)	0.057 (2)	0.0105 (15)	0.0007 (15)	-0.0220 (16)
C7	0.055 (2)	0.106 (3)	0.060 (2)	0.0086 (19)	0.0085 (17)	-0.036 (2)
C8	0.0416 (15)	0.0473 (15)	0.0401 (15)	0.0086 (12)	-0.0030 (12)	-0.0117 (12)
C9	0.0340 (14)	0.0480 (15)	0.0382 (14)	0.0065 (11)	-0.0050 (11)	-0.0135 (12)
C10	0.0424 (15)	0.0585 (18)	0.0401 (15)	0.0051 (13)	-0.0046 (12)	-0.0171 (13)
C11	0.0469 (17)	0.0540 (18)	0.0452 (16)	0.0011 (13)	-0.0054 (13)	-0.0096 (13)
C12	0.0573 (19)	0.0476 (17)	0.0589 (19)	0.0029 (14)	-0.0046 (15)	-0.0186 (15)
C13	0.0368 (15)	0.0523 (16)	0.0375 (14)	0.0120 (12)	-0.0069 (11)	-0.0142 (12)
C14	0.0348 (14)	0.0567 (17)	0.0363 (14)	0.0108 (12)	-0.0068 (11)	-0.0116 (12)
C15	0.0571 (19)	0.081 (2)	0.0335 (15)	0.0107 (17)	0.0004 (13)	-0.0087 (15)
C16	0.062 (2)	0.074 (2)	0.0424 (17)	0.0018 (16)	-0.0010 (15)	-0.0003 (15)
C17	0.0590 (19)	0.0542 (18)	0.0468 (17)	0.0046 (14)	-0.0015 (14)	-0.0062 (14)
C18	0.0436 (16)	0.0542 (17)	0.0366 (14)	0.0103 (12)	-0.0056 (12)	-0.0078 (12)

Geometric parameters (Å, °)

1.277 (3)	C7—H7A	0.9300
1.422 (4)	C8—C9	1.486 (4)
1.501 (5)	C8—C18	1.491 (4)
0.9600	C9—C10	1.387 (4)
0.9600	C9—C13	1.414 (4)
0.9600	C10-C11	1.373 (4)
1.327 (4)	C10—H10A	0.9300
1.334 (4)	C11—C12	1.392 (4)
1.388 (5)	C11—H11A	0.9300
1.391 (5)	C12—H12A	0.9300
1.332 (3)	C13—C14	1.477 (4)
1.337 (4)	C14—C18	1.397 (4)
1.380 (4)	C15—C16	1.374 (5)
0.9300	C15—H15A	0.9300
	1.277 (3) 1.422 (4) 1.501 (5) 0.9600 0.9600 1.327 (4) 1.334 (4) 1.388 (5) 1.391 (5) 1.332 (3) 1.337 (4) 1.380 (4) 0.9300	1.277 (3) $C7$ —H7A $1.422 (4)$ $C8$ —C9 $1.501 (5)$ $C8$ —C18 0.9600 $C9$ —C10 0.9600 $C9$ —C13 0.9600 $C10$ —C11 $1.327 (4)$ $C10$ —H10A $1.334 (4)$ $C11$ —C12 $1.388 (5)$ $C11$ —H11A $1.391 (5)$ $C12$ —H12A $1.332 (3)$ $C13$ —C14 $1.337 (4)$ $C14$ —C18 $1.380 (4)$ $C15$ —C16 0.9300 $C15$ —H15A

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.382 (4)	C16—C17	1.383 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4A	0.9300	C16—H16A	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.394 (4)	C17—C18	1.375 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.374 (4)	C17—H17A	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6А	0.9300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C5	121.0 (3)	C10—C9—C13	117.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—H1B	109.5	C10—C9—C8	133.8 (2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2—C1—H1C	109.5	C13—C9—C8	108.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H1B—C1—H1C	109.5	C11—C10—C9	117.7 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2—C1—H1D	109.5	C11—C10—H10A	121.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H1B—C1—H1D	109.5	C9—C10—H10A	121.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H1C—C1—H1D	109.5	C10—C11—C12	119.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—N2—C13	115.1 (2)	C10—C11—H11A	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C2—C3	117.2 (3)	C12—C11—H11A	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C2—C1	120 8 (3)	N2-C12-C11	124 6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} $-C_{2}$ $-C_{1}$	120.0(3) 122.0(4)	N2-C12-H12A	117.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14 - N3 - C15	1140(3)	C_{11} C_{12} H_{12A}	117.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C3-C2	121.8 (3)	N^{2} C^{13} C^{9}	125 1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4_C3_H3B	119.1	N2 - C13 - C14	125.1(5) 126.4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2_C3_H3B	119.1	C_{0} C_{13} C_{14}	120.4(2) 108 5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3 = 115D$	119.1	$N_{2}^{2} C_{14}^{14} C_{18}^{18}$	100.3(2) 125.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3 = C_4 = C_3$	119.9 (3)	$N_{3} = C_{14} = C_{18}$	125.5(3) 126.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_5 = C_4 = H_{4A}$	120.0	13 - 14 - 13	120.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3}	120.0	C16 - C14 - C15	108.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 = C5 = C6	119.2 (3)	$N_{2} = C_{15} = U_{15} A$	124.8 (5)
C6-C5-N1119.3 (3)C16-C15-H15A117.6C7-C6-C5119.9 (3)C15-C16-C17120.6 (3)C7-C6-H6A120.1C15-C16-H16A119.7C5-C6-H6A120.1C17-C16-H16A119.7C6-C7-C2121.9 (3)C18-C17-C16115.9 (3)C6-C7-H7A119.1C18-C17-H17A122.0C2-C7-H7A119.1C16-C17-H17A122.0N1-C8-C9133.1 (3)C17-C18-C14119.4 (3)N1-C8-C18121.3 (3)C17-C18-C8131.6 (3)C9-C8-C18105.6 (2)C14-C18-C8108.9 (2)C7-C2-C3-C4-1.2 (5)C12-N2-C13-C14-179.6 (3)C1-C2-C3-C4179.2 (3)C10-C9-C13-N2-2.8 (4)C2-C3-C4-C5-0.4 (5)C8-C9-C13-N2-179.6 (2)C3-C4-C5-N1176.7 (3)C8-C9-C13-C140.8 (3)C4-C5-C6-122.7 (3)C15-N3-C14-C181.2 (4)C8-N1-C5-C6-122.7 (3)C15-N3-C14-C13-178.0 (3)C4-C5-C6-C7-2.9 (5)N2-C13-C14-N3-1.2 (4)N1-C5-C6-C7-2.9 (5)N2-C13-C14-N3-1.2 (4)N1-C5-C6-C7-177.3 (3)C9-C13-C14-N3-1.2 (4)N1-C5-C6-C7-C21.3 (6)N2-C13-C14-C18179.5 (3)C3-C2-C7-C60.7 (6)C9-C13-C14-C18-1.0 (3)C1-C2-C7-C6-179.7 (4)C14-N3-C15-C160.0 (4)C5-N1-C8-C98.7 (5)N3-C15-C16-C17-0.6 (5)	C4-C5-N1	121.3 (3)	N3—CI5—HI5A	117.6
C7-C6-C5119.9 (3)C15-C16-C17120.6 (3)C7-C6-H6A120.1C15-C16-H16A119.7C5-C6-H6A120.1C17-C16-H16A119.7C6-C7-C2121.9 (3)C18-C17-C16115.9 (3)C6-C7-H7A119.1C16-C17-H17A122.0C1-C8-C9133.1 (3)C17-C18-C14119.4 (3)N1-C8-C9133.1 (3)C17-C18-C8131.6 (3)C9-C8-C18105.6 (2)C14-C18-C8108.9 (2)C7-C2-C3-C4-1.2 (5)C12-N2-C13-C14-179.6 (3)C1-C2-C3-C4179.2 (3)C10-C9-C13-N2-2.8 (4)C2-C3-C4-C5-0.4 (5)C8-C9-C13-N2-179.6 (2)C3-C4-C5-C62.5 (5)C10-C9-C13-C14177.7 (2)C3-C4-C5-C7-0.2 (5)C15-N3-C14-C181.2 (4)C8-N1-C5-C6-122.7 (3)C15-N3-C14-C181.2 (4)N1-C5-C6-C7-2.9 (5)N2-C13-C14-N3-1.2 (4)N1-C5-C6-C7-2.9 (5)N2-C13-C14-C181.78.4 (2)C5-C6-C7-C21.3 (6)N2-C13-C14-C18-1.0 (3)C1-C2-C7-C60.7 (6)C9-C13-C14-C18-1.0 (3)C1-C2-C7-C6-179.7 (4)C14-N3-C15-C160.0 (4)C5-N1-C8-C98.7 (5)N3-C15-C16-C17-0.6 (5)	C6-C3-N1	119.3 (3)	C16—C15—H15A	11/.6
C/-C6-H6A120.1C13-C16-H16A119.7C5-C6-H6A120.1C17-C16-H16A119.7C6-C7-C2121.9 (3)C18-C17-C16115.9 (3)C6-C7-H7A119.1C18-C17-H17A122.0C2-C7-H7A119.1C16-C17-H17A122.0N1-C8-C9133.1 (3)C17-C18-C14119.4 (3)N1-C8-C18121.3 (3)C17-C18-C8131.6 (3)C9-C8-C18105.6 (2)C14-C18-C8108.9 (2)C7-C2-C3-C4-1.2 (5)C12-N2-C13-N2-2.8 (4)C2-C3-C4-C5-0.4 (5)C8-C9-C13-N2-2.8 (4)C2-C3-C4-C5-C62.5 (5)C10-C9-C13-N2-179.6 (2)C3-C4-C5-N1176.7 (3)C8-C9-C13-C140.8 (3)C8-N1-C5-C6-122.7 (3)C15-N3-C14-C181.2 (4)C8-N1-C5-C6-C7-2.9 (5)N2-C13-C14-C13-178.0 (3)C4-C5-C6-C7-2.9 (5)N2-C13-C14-C181.2 (4)N1-C5-C6-C7-C21.3 (6)N2-C13-C14-C181.79.5 (3)C3-C2-C7-C60.7 (6)C9-C13-C14-C18-1.0 (3)C1-C2-C7-C6-179.7 (4)C14-N3-C15-C160.0 (4)C5-N1-C8-C98.7 (5)N3-C15-C16-C17-0.6 (5)	C/-C6-C5	119.9 (3)	C15-C16-C17	120.6 (3)
CS-C6-H6A120.1C1/C16H16A119.7C6-C7-C2121.9 (3)C18C17C16115.9 (3)C6-C7-H7A119.1C18C17H17A122.0C2-C7-H7A119.1C16C17H17A122.0N1-C8-C9133.1 (3)C17C18C14119.4 (3)N1-C8-C18121.3 (3)C17C18C8131.6 (3)C9-C8-C18105.6 (2)C14C18C8108.9 (2)C7-C2-C3-C4-1.2 (5)C12N2C13C14-179.6 (3)C1-C2-C3-C4179.2 (3)C10C9C13N2-2.8 (4)C2-C3-C4-C5-0.4 (5)C8C9C13N2-179.6 (2)C3-C4-C5-C62.5 (5)C10C9C13C14177.7 (2)C3-C4-C5-N1176.7 (3)C8C9C13C140.8 (3)C8-N1-C5-C6-122.7 (3)C15N3C14C181.2 (4)C8-N1-C5-C6-C7-2.9 (5)N2C13C14N3-1.2 (4)N1-C5-C6-C7-2.9 (5)N2C13C14N3-1.2 (4)N1-C5-C6-C7-177.3 (3)C9C13C14N3-1.2 (4)N1-C5-C6-C7-C21.3 (6)N2C13C14C18179.5 (3)C3-C2-C7-C60.7 (6)C9C13C14C18-1.0 (3)C1-C2-C7-C6-179.7 (4)C14N3C15C160.0 (4)C5-N1-C8-C98.7 (5)N3C15C16C17-0.6 (5)	С/—С6—Н6А	120.1	C15—C16—H16A	119.7
C6-C7-C2 $121.9 (3)$ $C18-C17-C16$ $115.9 (3)$ $C6-C7-H7A$ 119.1 $C18-C17-H17A$ 122.0 $C2-C7-H7A$ 119.1 $C16-C17-H17A$ 122.0 $N1-C8-C9$ $133.1 (3)$ $C17-C18-C14$ $119.4 (3)$ $N1-C8-C18$ $121.3 (3)$ $C17-C18-C8$ $131.6 (3)$ $C9-C8-C18$ $105.6 (2)$ $C14-C18-C8$ $108.9 (2)$ $C7-C2-C3-C4$ $-1.2 (5)$ $C12-N2-C13-C14$ $-179.6 (3)$ $C1-C2-C3-C4$ $179.2 (3)$ $C10-C9-C13-N2$ $-2.8 (4)$ $C2-C3-C4-C5$ $-0.4 (5)$ $C8-C9-C13-N2$ $-179.6 (2)$ $C3-C4-C5-C6$ $2.5 (5)$ $C10-C9-C13-N2$ $-179.6 (2)$ $C3-C4-C5-N1$ $176.7 (3)$ $C8-C9-C13-C14$ $0.8 (3)$ $C8-N1-C5-C4$ $63.1 (4)$ $C15-N3-C14-C18$ $1.2 (4)$ $C8-N1-C5-C6-C7$ $-2.9 (5)$ $N2-C13-C14-N3$ $-178.0 (3)$ $C4-C5-C6-C7$ $-2.9 (5)$ $N2-C13-C14-N3$ $-1.2 (4)$ $N1-C5-C6-C7$ $-177.3 (3)$ $C9-C13-C14-N3$ $-1.2 (4)$ $N1-C5-C6-C7-C2$ $1.3 (6)$ $N2-C13-C14-C18$ $-1.0 (3)$ $C3-C2-C7-C6$ $0.7 (6)$ $C9-C13-C14-C18$ $-1.0 (3)$ $C1-C2-C7-C6$ $-179.7 (4)$ $C14-N3-C15-C16$ $0.0 (4)$ $C5-N1-C8-C9$ $8.7 (5)$ $N3-C15-C16-C17$ $-0.6 (5)$	С5—С6—Н6А	120.1	С17—С16—Н16А	119.7
C6—C7—H7A119.1C18—C17—H17A122.0C2—C7—H7A119.1C16—C17—H17A122.0N1—C8—C9133.1 (3)C17—C18—C14119.4 (3)N1—C8—C18121.3 (3)C17—C18—C8131.6 (3)C9—C8—C18105.6 (2)C14—C18—C8108.9 (2)C7—C2—C3—C4-1.2 (5)C12—N2—C13—C14-179.6 (3)C1—C2—C3—C4179.2 (3)C10—C9—C13—N2-2.8 (4)C2—C5—C62.5 (5)C10—C9—C13—N2-179.6 (2)C3—C4—C5—C62.5 (5)C10—C9—C13—C14177.7 (2)C3—C4—C5—N1176.7 (3)C8—C9—C13—C140.8 (3)C8—N1—C5—C6-122.7 (3)C15—N3—C14—C181.2 (4)C4—C5—C6—C7-2.9 (5)N2—C13—C14—N3-1.2 (4)N1—C5—C6—C7-177.3 (3)C9—C13—C14—N3178.4 (2)C5—C6—C7—C21.3 (6)N2—C13—C14—C18179.5 (3)C3—C2—C7—C60.7 (6)C9—C13—C14—C18-1.0 (3)C1—C2—C7—C6-179.7 (4)C14—N3—C15—C160.0 (4)C5—N1—C8—C98.7 (5)N3—C15—C16—C17-0.6 (5)	C6—C7—C2	121.9 (3)	C18—C17—C16	115.9 (3)
C2—C7—H7A119.1C16—C17—H17A122.0N1—C8—C9133.1 (3)C17—C18—C14119.4 (3)N1—C8—C18121.3 (3)C17—C18—C8131.6 (3)C9—C8—C18105.6 (2)C14—C18—C8108.9 (2)C7—C2—C3—C4-1.2 (5)C12—N2—C13—C14-179.6 (3)C1—C2—C3—C4179.2 (3)C10—C9—C13—N2-2.8 (4)C2—C3—C4—C5-0.4 (5)C8—C9—C13—N2-179.6 (2)C3—C4—C5—C62.5 (5)C10—C9—C13—C14177.7 (2)C3—C4—C5—N1176.7 (3)C8—C9—C13—C140.8 (3)C8=N1—C5—C463.1 (4)C15—N3—C14—C181.2 (4)C8=N1—C5—C6-122.7 (3)C15—N3—C14—C13-178.0 (3)C4—C5—C6—C7-2.9 (5)N2—C13—C14—N3178.4 (2)C5—C6—C7-177.3 (3)C9—C13—C14—C18179.5 (3)C3—C2—C7—C60.7 (6)C9—C13—C14—C18-1.0 (3)C1—C2—C7—C6-179.7 (4)C14—N3—C15—C160.0 (4)C5—N1—C8—C98.7 (5)N3—C15—C16—C17-0.6 (5)	С6—С7—Н7А	119.1	C18—C17—H17A	122.0
N1C8C9133.1 (3)C17C18C14119.4 (3)N1C8C18121.3 (3)C17C18C8131.6 (3)C9C8C18105.6 (2)C14C18C8108.9 (2)C7C2C3C4-1.2 (5)C12N2C13C14-179.6 (3)C1C2C3C4179.2 (3)C10C9C13N2-2.8 (4)C2C3C4C5-0.4 (5)C8C9C13N2-179.6 (2)C3C4C5C62.5 (5)C10C9C13C14177.7 (2)C3C4C5N1176.7 (3)C8C9C13C140.8 (3)C8N1C5C463.1 (4)C15N3C14C181.2 (4)C8N1C5C6-122.7 (3)C15N3C14C13-178.0 (3)C4C5C6C7-2.9 (5)N2C13C14N3178.4 (2)C5C6C7-2.9 (5)N2C13C14C18179.5 (3)C3C2C7C60.7 (6)C9C13C14C18-1.0 (3)C1C2C7C6-179.7 (4)C14N3C15C160.0 (4)C5N1C8C98.7 (5)N3C15C16C17-0.6 (5)	С2—С7—Н7А	119.1	C16—C17—H17A	122.0
N1C8C18121.3 (3)C17C18C8131.6 (3)C9C8C18105.6 (2)C14C18C8108.9 (2)C7C2C3C4-1.2 (5)C12N2C13C14-179.6 (3)C1C2C3C4179.2 (3)C10C9C13N2-2.8 (4)C2C3C4C5-0.4 (5)C8C9C13N2-179.6 (2)C3C4C5C62.5 (5)C10C9C13C14177.7 (2)C3C4C5N1176.7 (3)C8C9C13C140.8 (3)C8N1C5C463.1 (4)C15N3C14C181.2 (4)C8N1C5C6-122.7 (3)C15N3C14C13-178.0 (3)C4C5C6C7-2.9 (5)N2C13C14N3-1.2 (4)N1C5C6C7-2.9 (5)N2C13C14N3178.4 (2)C5C6C7C21.3 (6)N2C13C14C18179.5 (3)C3C2C7C60.7 (6)C9C13C14C18-1.0 (3)C1C2C7C6-179.7 (4)C14N3C15C160.0 (4)C5N1C8C98.7 (5)N3C15C16C17-0.6 (5)	N1—C8—C9	133.1 (3)	C17—C18—C14	119.4 (3)
C9-C8-C18105.6 (2)C14-C18-C8108.9 (2)C7-C2-C3-C4-1.2 (5)C12-N2-C13-C14-179.6 (3)C1-C2-C3-C4179.2 (3)C10-C9-C13-N2-2.8 (4)C2-C3-C4-C5-0.4 (5)C8-C9-C13-N2-179.6 (2)C3-C4-C5-C62.5 (5)C10-C9-C13-C14177.7 (2)C3-C4-C5-N1176.7 (3)C8-C9-C13-C140.8 (3)C8-N1-C5-C463.1 (4)C15-N3-C14-C181.2 (4)C8-N1-C5-C6-122.7 (3)C15-N3-C14-C13-178.0 (3)C4-C5-C6-C7-2.9 (5)N2-C13-C14-N3178.4 (2)N1-C5-C6-C7-177.3 (3)C9-C13-C14-C18179.5 (3)C3-C2-C7-C60.7 (6)C9-C13-C14-C18-1.0 (3)C1-C2-C7-C6-179.7 (4)C14-N3-C15-C160.0 (4)C5-N1-C8-C98.7 (5)N3-C15-C16-C17-0.6 (5)	N1—C8—C18	121.3 (3)	C17—C18—C8	131.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C18	105.6 (2)	C14—C18—C8	108.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C2—C3—C4	-1.2 (5)	C12—N2—C13—C14	-179.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	179.2 (3)	C10-C9-C13-N2	-2.8 (4)
C3C4C5C62.5 (5)C10C9C13C14177.7 (2)C3C4C5N1176.7 (3)C8C9C13C140.8 (3)C8N1C5C463.1 (4)C15N3C14C181.2 (4)C8N1C5C6-122.7 (3)C15N3C14C13-178.0 (3)C4C5C6C7-2.9 (5)N2C13C14N3-1.2 (4)N1C5C6C7-177.3 (3)C9C13C14N3178.4 (2)C5C6C7C21.3 (6)N2C13C14C18179.5 (3)C3C2C7C60.7 (6)C9C13C14C18-1.0 (3)C1C2C7C6-179.7 (4)C14N3C15C160.0 (4)C5N1C8C98.7 (5)N3C15C16C17-0.6 (5)	C2—C3—C4—C5	-0.4 (5)	C8—C9—C13—N2	-179.6 (2)
C3-C4-C5-N1176.7 (3)C8-C9-C13-C140.8 (3)C8-N1-C5-C4 $63.1 (4)$ C15-N3-C14-C18 $1.2 (4)$ C8-N1-C5-C6 $-122.7 (3)$ C15-N3-C14-C13 $-178.0 (3)$ C4-C5-C6-C7 $-2.9 (5)$ N2-C13-C14-N3 $-1.2 (4)$ N1-C5-C6-C7 $-177.3 (3)$ C9-C13-C14-N3 $178.4 (2)$ C5-C6-C7-C2 $1.3 (6)$ N2-C13-C14-C18 $179.5 (3)$ C3-C2-C7-C6 $0.7 (6)$ C9-C13-C14-C18 $-1.0 (3)$ C1-C2-C7-C6 $-179.7 (4)$ C14-N3-C15-C16 $0.0 (4)$ C5-N1-C8-C9 $8.7 (5)$ N3-C15-C16-C17 $-0.6 (5)$	C3—C4—C5—C6	2.5 (5)	C10-C9-C13-C14	177.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—N1	176.7 (3)	C8—C9—C13—C14	0.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C5—C4	63.1 (4)	C15—N3—C14—C18	1.2 (4)
C4—C5—C6—C7 $-2.9 (5)$ N2—C13—C14—N3 $-1.2 (4)$ N1—C5—C6—C7 $-177.3 (3)$ C9—C13—C14—N3 $178.4 (2)$ C5—C6—C7—C2 $1.3 (6)$ N2—C13—C14—C18 $179.5 (3)$ C3—C2—C7—C6 $0.7 (6)$ C9—C13—C14—C18 $-1.0 (3)$ C1—C2—C7—C6 $-179.7 (4)$ C14—N3—C15—C16 $0.0 (4)$ C5—N1—C8—C9 $8.7 (5)$ N3—C15—C16—C17 $-0.6 (5)$	C8—N1—C5—C6	-122.7 (3)	C15—N3—C14—C13	-178.0 (3)
N1-C5-C6-C7 -177.3 (3) C9-C13-C14-N3 178.4 (2) C5-C6-C7-C2 1.3 (6) N2-C13-C14-C18 179.5 (3) C3-C2-C7-C6 0.7 (6) C9-C13-C14-C18 -1.0 (3) C1-C2-C7-C6 -179.7 (4) C14-N3-C15-C16 0.0 (4) C5-N1-C8-C9 8.7 (5) N3-C15-C16-C17 -0.6 (5)	C4—C5—C6—C7	-2.9 (5)	N2-C13-C14-N3	-1.2 (4)
C5-C6-C7-C2 1.3 (6) N2-C13-C14-C18 179.5 (3) C3-C2-C7-C6 0.7 (6) C9-C13-C14-C18 -1.0 (3) C1-C2-C7-C6 -179.7 (4) C14-N3-C15-C16 0.0 (4) C5-N1-C8-C9 8.7 (5) N3-C15-C16-C17 -0.6 (5)	N1-C5-C6-C7	-177.3 (3)	C9-C13-C14-N3	178.4 (2)
C3-C2-C7-C6 0.7 (6) C9-C13-C14-C18 -1.0 (3) C1-C2-C7-C6 -179.7 (4) C14-N3-C15-C16 0.0 (4) C5-N1-C8-C9 8.7 (5) N3-C15-C16-C17 -0.6 (5)	C5—C6—C7—C2	1.3 (6)	N2-C13-C14-C18	179.5 (3)
C1C2C7C6 -179.7 (4) C14N3C15C16 0.0 (4) C5N1C8C9 8.7 (5) N3C15C16C17 -0.6 (5)	C3—C2—C7—C6	0.7 (6)	C9-C13-C14-C18	-1.0 (3)
C5—N1—C8—C9 8.7 (5) N3—C15—C16—C17 -0.6 (5)	C1—C2—C7—C6	-179.7 (4)	C14—N3—C15—C16	0.0 (4)
	C5—N1—C8—C9	8.7 (5)	N3-C15-C16-C17	-0.6 (5)

supplementary materials

C5—N1—C8—C18	-172.5 (3)	C15-C16-C17-C18	-0.1 (4)
N1-C8-C9-C10	2.4 (5)	C16-C17-C18-C14	1.2 (4)
C18—C8—C9—C10	-176.5 (3)	C16-C17-C18-C8	177.0 (3)
N1-C8-C9-C13	178.6 (3)	N3-C14-C18-C17	-1.9 (4)
C18—C8—C9—C13	-0.3 (3)	C13-C14-C18-C17	177.4 (2)
C13-C9-C10-C11	2.2 (4)	N3-C14-C18-C8	-178.6 (2)
C8—C9—C10—C11	178.1 (3)	C13—C14—C18—C8	0.7 (3)
C9—C10—C11—C12	0.0 (4)	N1-C8-C18-C17	4.5 (5)
C13—N2—C12—C11	1.5 (4)	C9—C8—C18—C17	-176.4 (3)
C10-C11-C12-N2	-2.0 (5)	N1-C8-C18-C14	-179.3 (3)
C12—N2—C13—C9	0.9 (4)	C9—C8—C18—C14	-0.3 (3)

Fig. 2

